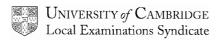
CAMBRIDGE

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level Advanced International Certificate of Education

MARK SCHEME for the November 2003 question papers

MATHEMATICS				
9709/01	Paper 1 (Pure 1), maximum raw mark 75			
9709/02	Paper 2 (Pure 2), maximum raw mark 50			
9709/03, 8719/03	Paper 3 (Pure 3), maximum raw mark 75			
9709/04	Paper 4 (Mechanics 1), maximum raw mark 50			
9709/05, 8719/05	Paper 5 (Mechanics 2), maximum raw mark 50			
9709/06, 0390/06	Paper 6 (Probability and Statistics 1), maximum raw mark 50			
9709/07, 8719/07	Paper 7 (Probability and Statistics 2), maximum raw mark 50			


These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Page 1	Mark Scheme	
	MATHEMATICS – NOVEMBER 2003	9709

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 2	Mark Scheme	Syllabus
	MATHEMATICS – NOVEMBER 2003	9709

• The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied

Penalties

in the light of a particular circumstance)

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √"marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

 PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Pure Mathematics : Paper One

Page 1	Mark Scheme		Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	1

·			
1	x(11-2x) = 12	M1	Complete elimination of x, or of y.
	$2x^2 - 11x + 12 = 0$	A1	Correct quadratic. (or $y^2-11y+24=0$)
	Solution of quadratic	DM1	Correct method of solution \rightarrow 2values
	\rightarrow (1½,8) and (4,3)	A1	All correct
		[4]	(guesswork or TI B1 for one pair of
			values, full marks for both)
2	(i) $4s^4+5=7(1-s^2) \rightarrow 4x^2+7x-2=0$	B1	Use of $s^2+c^2=1$. Answer given.
		[1]	
	(ii) $4s^4 + 7s^2 - 2 = 0$		
		M1	Recognition of quadratic in s ²
	\rightarrow s ² = ¹ / ₄ or s ² = -2		
	$\rightarrow \sin\theta = \pm \frac{1}{2}$	A1A1√	Co. For 180° - "his value"
	$\rightarrow \theta = 30^{\circ} \text{ and } 150^{\circ}$	A1A1	
	and $\theta = 210^{\circ}$ and 330°		For other 2 answers from "his value",
		[4]	providing no extra answers in the range or
			answers from $s^2 = -1$
3	(a) $a=60$ $n=48$ S $=2726$		
3	(a) $a=60$, $n=48$, $S_n=3726$	M1	Correct formula (M0 if nth term used)
	S_n formula used $\rightarrow d = \$0.75$	A1	Co
	$\rightarrow d - 50.75$ 3 rd term = a+2d = \$61.50	A1 A1	Use of $a+2d$ with his d. 61.5 ok.
	5 term = a + 2a = \$01.50	-	OSC OI a + 2d with firs d. $OI.5 $ ok.
	(b) $a=6$ $ar=4$ $r=2/$	[3] M1	a, ar correct, and r evaluated
	(b) $a=6 \text{ ar } =4$ $\therefore r=2/3$	M1A1	Correct formula used, but needs $r <1$ for
	$S_{\infty} = a/(1-r) = 18$		M mark
		[3]	M mark
4	(i) $y = x^3 - 2x^2 + x$ (+c)	B2,1,0	Co - unsimplified ok.
-	(1,5) used to give $c=5$	B1	Must have integrated + use of $x=1$ and $y=5$
	(1,5) used to give e - 5	[3]	for c
		[3]	
	(ii) $3x^2 - 4x + 1 > 0$	M1	Set to 0 and attempt to solve.
	\rightarrow end values of 1 and $\frac{1}{3}$	Al	Co for end values – even if <,>,=,etc
	5	Al	Co (allow \leq and \geq). Allow $1 < x < \frac{1}{3}$
	\rightarrow x $<\frac{1}{3}$ and x >1	[3]	$co (anow \leq and \leq)$. Allow $1 < x <_3$
		[2]	
5	(i) m of BC = $\frac{1}{2}$	B1	Со
A 10	Eqn BC $y-6=\frac{1}{2}(x-4)$	M1A1√	Correct form of eqn. $\sqrt{\text{ on m}}="1/2"$."
11	m of CD = -2	M1	Use of $m_1m_2=-1$
P	eqn CD y-5=-2(x-12)	A1√	$\sqrt{\text{ on his "1/2" but needs both M marks.}}$
		[5]	
	(125)	L-]	
	(2.) (12,5)		
0	х (
	(ii) Sim eqns $2y=x+8$ and $y+2x=29$	M1	Method for solving
	\rightarrow C (10,9)	A1	Со
		[2]	Diagram only for (ii), allow B1 for (10,9)

Page 2	Mark Scheme		Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	1

6 (i) $20 = 2r + r\theta$ $\rightarrow \theta = (20 / r) - 2$ (ii) $A = \frac{1}{2}r^{2}\theta$ $\rightarrow A = 10r - r^{2}$ (iii) Cos rule PQ ² = 8 ² +8 ² -2.8.8cos0.5	M1 A1 [2] M1 A1 [2] M1	Eqn formed + use of $r\theta$ + at least one r Answer given. Appropriate use of $\frac{1}{2}r^{2}\theta$ Co – but ok unsimplified –eg $\frac{1}{2}r^{2}(20/r)-2)$ Recognition of "chord" +any attempt at
Or trig $PQ = 2 \times 8 \sin 0.25$ $\rightarrow PQ = 3.96$ (allow 3.95).	A1 A1 [3]	trigonometry in triangle. Correct expression for PQ or PQ ² . Co
7 (i) Height = 4	B1 [1]	Pythagoras or guess – anywhere, $4\mathbf{k}$ ok.
(ii) MC = $3i-6j-4k$ MN = $6j-4k$ (iii) MC.MN = $-36+16 = -20$ MC.MN = $\sqrt{61}\sqrt{52}\cos\theta$ $\rightarrow \theta = 111^{\circ}$	$ B2,1 \sqrt{B1} \sqrt{[3]} M1A1 \sqrt{M1} \sqrt{M1} \sqrt{M1} \sqrt{[4]} [4] $	 √ for "4". Special case B1 for -3i+6j+4k √ on "4". Accept column vectors. (nb if (ii) incorrect, but answers are correct in (iii) allow feedback). Use of x₁y₁+x₂y₂+x₃y₃. √ on MC and MN Product of two moduli and cos θ. Co. Nb If both MC and MN "reversed", allow
8 (i) $y = 72 \div (2x^2)$ or $36 \div x^2$ $A = 4x^2 + 6xy$ $\rightarrow A = 4x^2 + 216 \div x$ (ii) $dA/dx = 8x - 216 \div x^2$ $= 0$ when $8x^3 = 216$ $\rightarrow x = 3$	B1 M1 A1 [3] M1 DM1 A1 [3]	 111° for full marks. Co from volume = lbh . Attempts most of the faces(4 or more) Co – answer was given. Reasonable attempt at differentiation. Sets his differential to 0 and uses. Co. (answer = ±3 loses last A mark)
(iii) Stationary value = 108 cm^2 $d^2A/dx^2=8+432 \div x^3$ \rightarrow Positive when x=3 Minimum.	A1√ M1 A1 [3]	For putting his x into his A. Allow in (ii). Correct method – could be signs of dA/dx A mark needs d^2A/dx^2 correct algebraically, + x=3 + minimum. It does not need "24".

Page 3	Mark Scheme		Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	1

9	(i) $dy/dx = -24/(3x+2)^2$	M1A1	Use of fn of fn. Needs $\times 3$ for M mark. Co.
A1	(1) dy/dx = -24/(3x+2)	WITAT	Use of m of m. Needs ×5 for W mark. Co.
AV 4 3x+2	Eqn of tangent y-1=- $\frac{3}{8}$ (x-2) Cuts y=0 when x= $4\frac{2}{3}$	M1A1√	Use of line form with dy/dx. Must use calculus. $$ on his dy/dx. Normal M0.
0 D C	Area of Q = $\frac{1}{2} \times 2^{\frac{2}{3}} \times 1 = \frac{4}{3}$	M1A1 [6]	Needs y=0 and ½bh for M mark. (beware fortuitous answers)
	$=\pi \int y^{2} dx =\pi \int 64(3x+2)^{-2} dx$ =\pi [- 64(3x+2)^{-1} \dots 3] hits from 0 to 2 \rightarrow 8\pi	M1 A1A1 DM1 A1 [5]	Uses $\int y^2 + \text{ some integration} \rightarrow (3x+2)^k$. A1 without the ÷3. A1 for ÷3 and π Correct use of 0 and 2. DMO if 0 ignored. Co. Beware fortuitous answers.
10 (i) fg(x	$f(x) = g \text{ first, then } f(x) = \frac{1}{3}$ $\Rightarrow x = 1\frac{1}{3}$	M1 DM1 A1	Correct order - g first, then into f. Correct method of solution of fg=7. Co. (nb gf gets 0/3)
(or f(A)=7, A	$= 6, g(x) = 6, \rightarrow x = 1\frac{1}{3}$	[3]	(M1 for 6. M1 for g(x)=6. A1)
Ma	$e^{-1/2}(x+5)$ kes y the subject $y = 4 \div (2-x)$ $g^{-1} = 2 - (4 \div x)$	B1 M1 A1 [3]	Anywhere in the question. For changing the subject. Co – any correct answer. (A0 if f(y).)
\rightarrow Use	$\frac{1}{x} = \frac{1}{2} (x+5)$ x ² +x+8=0 of b ² -4ac \rightarrow Negative value No roots.	M1 M1 A1 [3]	Algebra leading to a quadratic. Quadratic=0 + use of b ² -4ac. Correct deduction from correct quadratic.
(iv)	Y a line x	B1 B1 B1 [3]	Sketch of f Sketch of f ⁻¹ Evidence of symmetry about y=x.

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Pure Mathematics : Paper Two

	Page 1	Mark Scheme	Syllabus	Paper
	i ugo i	A AND AS LEVEL – NOVEMBER 2003	9709	2
1	FITUED .	State or imply non-modular inequality e.g. $-2 < 8-3x < 2$, of	$(8.3r)^2 < 2$	2
I	LIIIILK.	or corresponding equation or pair of equations $-2 - 8 - 3x - 2$,	$\int (0-3x) < 2$., M1
		Obtain critical values 2 and $3\frac{1}{3}$		Al
		State correct answer $2 < x < 3\frac{1}{3}$		Al
	OR:	State one critical value (probably $x = 2$), from a graphical	method or b	v
	011.	inspection or by solving a linear equality or equation		, B1
		State the other critical value correctly		B1
		State correct answer $2 < x < 3\frac{1}{3}$		B1
		3		
				[3]
2		State or imply at any stage $\ln y = \ln k - x \ln a$		B1
		Equate estimate of $\ln y$ - intercept to $\ln k$		M1
		Obtain value for k in the range 9.97 ± 0.51		A1
		Calculate gradient of the line of data points		M1
		Obtain value for <i>a</i> in the range 2.12 ± 0.11		A1
				[5]
3 (i) <i>EITHER</i> :	Substitute -1 for x and equate to zero		M1
		Obtain answer <i>a</i> =6		A1
	OR:	Carry out complete division and equate remainder to zero		M1
	UK.	Obtain answer $a=6$		A1
				[2]
(i	i)	Substitute 6 for <i>a</i> and either show $f(x) = 0$ or divide by $(x - x)$	– 2) obtainin	-
		remainder of zero State or imply $(x + 1)(x - 2) = x^2 - x - 2$		B1 P1
	EITHER:	State of imply $(x + 1)(x - 2) - x - x - 2$ Attempt to find another quadratic factor by division or ins	nection	B1 M1
		State factor $(x^2 + x - 3)$	peetion	A1
	OR:	Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 3x^2 -$	-5x+6	
		after division by $x - 2$	1 , 1	B1
		Attempt to find a quadratic factor by further division by re	elevant diviso	
		or by inspection State factor $(x^2 + x - 3)$		M1 A1
				111
				[4]
4 (i)	State answer $R = 2$		B1
		Use trig formula to find α		M1
		Obtain answer $\alpha = \frac{1}{3}\pi$		A1
		3		
				[3]

Page 2	Mark Scheme Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003 9709	2
(ii)	Carry out, or indicate need for, evaluation of $\cos^{-1}(\sqrt{2}/2)$	M1*
	Obtain, or verify, the solution $\theta = \frac{7}{12}\pi$	A1
	Attempt correct method for the other solution in range	
	i.e. $-\cos^{-1}(\sqrt{2}/2) + \alpha$. M1(dep*)
	Obtain solution $\theta = \frac{1}{12}\pi$: [M1A0 for $\frac{25\pi}{12}$]	A1
		[4]
5 (i)	Make recognisable sketch of $y = 2^x$ or $y = x^2$, for $x < 0$	B1
	Sketch the other graph correctly	B1
		[2]
(ii)	Consider sign of $2^x - x^2$ at $x = -1$ and $x = -0.5$, or equivalent	M1
	Complete the argument correctly with appropriate calculations	A1
		[2]
(iii)	Use the iterative form correctly	M1
	Obtain final answer -0.77 Show sufficient iterations to justify its accuracy to 2 s.f., or show there	A1
	is a sign change in the interval $(-0.775, -0.765)$	A1
		[3]
6 (i)	State <i>A</i> is (4, 0)	B1
0(1)	State B is $(0, 4)$	B1 B1
		[2]
(;;)	Use the product rule to obtain the first derivative	
(ii)	Obtain derivative $(4 - x)e^x - e^x$, or equivalent	M1(dep) A1
	Equate derivative to zero and solve for x Obtain answer $x = 3$ only	M1 (dep) A1
	Solam answer x = 5 only	
		[4]
(iii)	Attempt to form an equation in p e.g. by equating gradients of OP and the tangent at P , or by substituting $(0, 0)$ in the equation of the	
	tangent at P	M1
	Obtain equation in any correct form e.g. $\frac{4-p}{p} = 3-p$	A1
	Obtain 3-term quadratic $p^2 - 4p + 4 = 0$, or equivalent	A1
	Attempt to solve a quadratic equation in p Obtain answer $p = 2$ only	M1 A1
		[5]
7 (i)	Attempt to differentiate using the quotient, product or chain rule Obtain derivative in any correct form	M1 A1
	Obtain the given answer correctly	A1
		[3]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	2
(ii)	State or imply the indefinite integral is –cotx		В
	Substitute limits and obtain given answer correctly		В
			[2
(iii)	Use $\cot^2 x = \csc^2 x - 1$ and attempt to integrate both term	ıs,	
	or equivalent		Ν
	Substitute limits where necessary and obtain a correct uns	simplified	
	answer		А
	Obtain final answer $\sqrt{3} - \frac{1}{3}\pi$		А
	3		
			[3
(iv)	Use $\cos 2A$ formula and reduce denominator to $2\sin^2 x$		E
	Use given result and obtain answer of the form $k\sqrt{3}$		Ν
	Obtain correct answer $\frac{1}{2}\sqrt{3}$		A
	2		-
			[,

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS Mathematics and Higher Mathematics : Paper 3

Page 1	Mark Scheme Syllabus Pape	r
	A AND AS LEVEL – NOVEMBER 2003 9709/8719 3	
	C_{1} (1) (1) (1) (1) (1) (2) (2) (2) (2) (2)	
EITHER:		
	pair of linear equations or quadratic equation Use correct method for solving an equation of the form 2^{x}	
	Use correct method for solving an equation of the form $2^x = a$ Obtain critical values 1.58 and 3.70, or exact equivalents	
	State correct answer $1.58 < x < 3.70$	
OR:	Use correct method for solving an equation of the form $2^x = a$	
	Obtain one critical value (probably 3.70), or exact equivalent	
	Obtain the other critical value, or exact equivalent State correct answer $1.58 < x < 3.70$	
	ad 3.7. Condone \leq for $<$. Allow final answers given separately. Exact equivalents	s mus
	or logarithms to base 10.] given as logarithms to base 2 can only earn M1 and B1 of the first scheme.]	
SR: Solutions	given as logarithms to base 2 can only earn wit and B1 of the first scheme.]	
EITHER:	Obtain correct unsimplified version of the x^2 or x^4 term of the expansion of	
	$(1+\frac{1}{2}x^2)^{-2}$ or $(2+x^2)^{-2}$	
	State correct first term $\frac{1}{4}$	
	Obtain next two terms $-\frac{1}{4}x^2 + \frac{3}{16}x^4$	A1+.
The M mark i	s not earned by versions with unexpanded binomial coefficients such as $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$.	
	given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.]	
SR: Solutions	involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct	
implified term	$a in x^2 or x^4$.]	
OR:	Differentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = kx(2 + x^2)^{-1}$	3]
	State correct first term $\frac{1}{4}$	
	Obtain next two terms $-\frac{1}{4}x^2 + \frac{3}{16}x^4$	A1+.
Allow exact d	lecimal equivalents as coefficients.]	111.1
	connui equivalents as coerricients.]	
	Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an	
	equation in $\cos \theta$	
	Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent	
	Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$	
	Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians	
	Obtain answer 180° or π (or 3.14) radians and no others in range	
The answer $ heta$	$= 180^{\circ}$ found by inspection can earn B1.]	
	rs outside the given range.]	

[5]

Page 2		Syllabus	Paper	
	A AND AS LEVEL – NOVEMBER 2003 9	709/8719	3	
4(i) EITHER	Obtain terms $\frac{1}{2\sqrt{x}}$ and $\frac{1}{2\sqrt{y}}\frac{dy}{dx}$, or equivalent		B1	+B1
	Obtain answer in any correct form, e.g. $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$			B1
OR:	Using chain or product rule, differentiate $(\sqrt{a} - \sqrt{x})^2$			M1
	Obtain derivative in any correct form			A1
	Express $\frac{dy}{dx}$ in terms of x and y only in any correct form			A1
OR:	Expand $(\sqrt{a} - \sqrt{x})^2$, differentiate and obtain term $-2 \cdot \frac{\sqrt{a}}{2\sqrt{x}}$, o	or equivalent	-	B1
	Obtain term 1 by differentiating an expansion of the form <i>a</i>	$+x \pm 2\sqrt{a}\sqrt{x}$	-	B1
	Express $\frac{dy}{dx}$ in terms of x and y only in any correct form			B1
				[3]
(ii)	State or imply coordinates of P are $(\frac{1}{4}a, \frac{1}{4}a)$			B1
	Form equation of the tangent at P			M1
	Obtain 3 term answer $x + y = \frac{1}{2}a$ correctly, or equivalent			A1
				[3]
5 (i)	Make recognizable sketch of $y = \sec x$ or $y = 3 - x^2$, for $0 < $	$x < \frac{1}{2}\pi$		B1
. *	Sketch the other graph correctly and justify the given statem	-		B1
				[2]

[Award B1 for a sketch with positive *y*-intercept and correct concavity. A correct sketch of $y = \cos x$ can only earn B1 in the presence of $1/(3-x^2)$. Allow a correct single graph and its intersection with y = 0 to earn full marks.]

(ii)	State or imply equation $\alpha = \cos^{-1}(1/(3-\alpha^2))$ or $\cos \alpha = 1/(3-\alpha^2)$	B1
	Rearrange this in the form given in part (i) i.e. sec $\alpha = 3 - \alpha^2$	B1

[Or work vice versa.]

M1
A1
A1
1

[3]

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	3
6 (i)	Use product or quotient rule to find derivative		
0(1)	Obtain derivative in any correct form		
	Equate derivative to zero and solve a linear equation in x	,	
	Obtain answer $3\frac{1}{2}$ only		
(ii)	State first step of the form $\pm \frac{1}{2}(3-x)e^{-2x} \pm \frac{1}{2}\int e^{-2x} dx$, w	ith or without	3
	State correct first step e.g. $-\frac{1}{2}(3-x)e^{-2x} - \frac{1}{2}\int e^{-2x} dx$, o	r equivalent, w	vith or
	without 3		
	Complete the integration correctly obtaining $-\frac{1}{2}(3-x)e^{-\frac{1}{2}(3-x)e^$	$^{-2x} + \frac{1}{4}e^{-2x}$, or	equivalent
	Substitute limits $x = 0$ and $x = 3$ correctly in the complete		-
	Obtain answer $\frac{1}{4}(5 + e^{-6})$, or exact equivalent (allow e^{0}	-	
7 (i) <i>EITHER</i>	: Attempt multiplication of numerator and denominator by	3 + 2i.	
	or equivalent	- ,	
	Simplify denominator to 13 or numerator to $13 + 26i$		
	Obtain answer $u = 1 + 2i$		
OR:	Using correct processes, find the modulus and argument	ofu	
OK.	Obtain modulus $\sqrt{5}$ (or 2.24) or argument tan ⁻¹ 2 (or 63.4		ng)
	Obtain answer $u = 1 + 2i$	+ 01 1.11 1aula	uns)
	Obtain answer $u = 1 \pm 21$		
(ii)	Show the point U on an Argand diagram in a relatively c	orrect position	1
()	Show a circle with centre U	F	-
	Show a circle with radius consistent with 2		
f.t. on the val	ue of <i>u</i> .]		
(iii)	State or imply relevance of the appropriate tangent from	Q to the circle	
()	Carry out a complete strategy for finding max arg z		
	Obtain final answer 126.9° (2.21 radians)		
	· · · · · ·		
	appropriate tangent is sufficient for $B1\sqrt{.}$		
[A final answe	er obtained by measurement earns M1 only.]		

Page 4	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	3	
	Divide by denominator and obtain a quadratic remainder	r		Ν
$\mathbf{S}(\mathbf{I})$ EITHER.	Obtain $A = 1$	L		A
	Use any relevant method to obtain B, C or D			Ν
	Obtain one correct answer			А
	Obtain $B = -1, C = 2, D = 0$			А
OR:	Reduce <i>RHS</i> to a single fraction and identify numerator	with that of f()	c)	N
	Obtain $A = 1$			A
	Use any relevant method to obtain <i>B</i> , <i>C</i> or <i>D</i> Obtain one correct answer			N A
	Obtain $B = -1$, $C = 2$, $D = 0$			A
	b = -1, c = 2, b = 0			
				[5
(ii)	Integrate and obtain terms $x - \ln (x - 1)$, or equivalent			В
	Obtain third term $\ln(x^2 + 1)$, or equivalent			В
	Substitute correct limits correctly in the complete integra	al		Ν
	Obtain given answer following full and exact working			А
	a			[4
	first B1 $$ is not available.]	$D_1/D_1/M_1 \sim$		1
[SK: 11 A IS (pomitted in part (i), treat as if $A = 0$. Thus only M1M1 and 1	DI VDI VIVII al	e avallable.]	
) (i)	Separate variables and attempt to integrate $\frac{1}{\sqrt{(P-A)}}$			N
	Obtain term $2\sqrt{(P-A)}$			А
	Obtain term $-kt$			А
				[3
				Į•
(ii)	Use limits $P = 5A$, $t = 0$ and attempt to find constant c			Ν
	Obtain $c = 4\sqrt{A}$, or equivalent			А
	Use limits $P = 2A$, $t = 2$ and attempt to find k			Ν
	Obtain given answer $k = \sqrt{A}$ correctly			А
				[4
(iii)	Substitute $P = A$ and attempt to calculate t			Ν
	Obtain answer $t = 4$			А
				[2
(iv)	Using answers to part (ii), attempt to rearrange solution	to give <i>P</i> in ter	rms of	
	A and t	_		Ν
	Obtain $P = \frac{1}{4}A(4 + (4 - t)^2)$, or equivalent, having square	$\operatorname{ed}\sqrt{A}$		А
				[2
For the M1.	$\sqrt{(P-A)}$ must be treated correctly.]			-

[For the M1, $\sqrt{(P-A)}$ must be treated correctly.]

Page 5	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	3
10 (i)	Express general point of <i>l</i> or <i>m</i> in component form e.g. (1) (6 + t, $-5 - 2t$, 4 + t) Equate at least two corresponding pairs of components ar for <i>s</i> or <i>t</i> Obtain <i>s</i> = 1 or <i>t</i> = -3 Verify that all three component equations are satisfied Obtain position vector 3 i + j + k of intersection point, or	nd attempt to	
(ii) EITHER:	Use scalar product to obtain $2a + b + 3c = 0$ and $a - 2b + 3c$ Solve and find one ratio e.g. $a : b$ State one correct ratio Obtain answer $a : b : c = 7 : 1 : -5$, or equivalent Substitute coordinates of a relevant point and values of a , equation of plane and calculate d Obtain answer $7x + y - 5z = 17$, or equivalent		eneral
OR:	Using two points on <i>l</i> and one on <i>m</i> (or <i>vice versa</i>) state t equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> e.g. $3a + b + c = d$, $a - 2c = d$ Solve and find one ratio e.g. $a : b$ State one correct ratio Obtain a ratio of three unknowns e.g. $a : b : c = 7 : 1 : -5$ Use coordinates of a relevant point and found ratio to find Obtain answer $7x + y - 5z = 17$, or equivalent	and $6a - 5b$ 5, or equivale	+4c = d
OR:	Form a correct 2-parameter equation for the plane, e.g. $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i}+\mathbf{j}+3\mathbf{k}) + \mu(\mathbf{i}-2\mathbf{j}+\mathbf{k})$ State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ State 3 correct equations Eliminate λ and μ Obtain equation in any correct unsimplified form Obtain $7x + y - 5z = 17$, or equivalent		
OR:	Attempt to calculate vector product of vectors parallel to Obtain two correct components of the product Obtain correct product, e.g. $7\mathbf{i} + \mathbf{j} - 5\mathbf{z}$ State that the plane has equation of the form $7x + y - 5z =$ Substitute coordinates of a relevant point and calculate <i>d</i> Obtain answer $7x + y - 5z = 17$, or equivalent	d	
F771 C 11 (1	rough is on $3\mathbf{i} + \mathbf{i} + \mathbf{k}$ only]		

[The follow through is on $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ only.]

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

F	Page 1	Mark Scheme A AND AS LEVEL – NOVEMBER 2003	Syllabus 9709	Paper 4
1	(i)	The force is 320 N	B1	1
	(ii)	For using Newton's second law (3 terms needed)	M1	
		$320 - R = 100 \times 0.5$	A1 \checkmark	
		Resistance is 270 N	A1	3
2	(i)	Speed is 20 ms ⁻¹	B1	1
	(ii)	For using $s = \frac{1}{2} gt^2$ $45 = \frac{1}{2} 10t^2$	M1	
		Time taken is 3 s	A1	2
	(iii)	For using $v^2 = u^2 + 2gs$ $(40^2 = 30^2 + 2 \times 10s)$	M1	
		Distance fallen is 35 m	A1	2
3	(i)	For using the idea of work as a force times a distance $(25 \times 2\cos 15^{\circ})$	M1	
		Work done is 48.3 J	A1	2
	(ii)	For resolving forces vertically (3 terms needed)	M1	
		$N + 25 \sin 15^\circ = 3 \times 10$ ($\sqrt{\cos instead}$ of sin following sin instead of cos in (i))	A1 √	
		Component is 23.5 N	A1	3
4	(i)	KE (gain) = $\frac{1}{2} 0.15 \times 8^2$	B1	
		For using PE loss = KE gain	M1	
		Height is 3.2 m	A1	3
	(ii)	For using WD is difference in PE loss and KE gain	M1	
		WD = $0.15 \times 10 \times 4 - \frac{1}{2} 0.15 \times 6^2$	A1	
		Work Done is 3.3 J	A1	3
	(impli (i) <i>s</i> = (ii) <i>a</i> =	by candidates who treat <i>AB</i> as if it is straight and vertical ficitly or otherwise) Max 2 out of 6 marks. $8^2 \div (2 \times 10) = 3.2$ B1 $= 6^2 \div (2 \times 4) = 4.5$ and $R = 0.15 \times 10 - 0.15 \times 4.5 = 0.825$ and $= 4 \times 0.825 = 3.3$ B1	1	

	Page 2	Mark Scheme	Syllabus	Paper
		A AND AS LEVEL – NOVEMBER 2003	9709	4
_				
5	(i)	For applying Newton's second law to <i>A</i> or to <i>B</i> (3 terms needed)	M1	
		T - 0.6 = 0.4a or $0.1g - T = 0.1a$	A1	
		For a second of the above 2 equations or for 0.1g - 0.6 = 0.5a [Can be scored in part (ii)] (Sign of a must be consistent with that in first equation)	B1	
		Tension is 0.92 N	A1	4
	(ii)	<i>a</i> = 0.8	B1	
		For using $v = at$	M1	
		Speed = 1.2 ms^{-1}	A1	3
6	(i)	$T_{\rm BM} = T_{\rm AM}$ or $T_{\rm BM} \cos 30^\circ = T_{\rm AM} \cos 30^\circ$	B1	
		For resolving forces at <i>M</i> horizontally $(2T \sin 30^\circ = 5)$ or for using the sine rule in the triangle of forces $(T \div \sin 60^\circ = 5 \div \sin 60^\circ)$ or for using Lami's theorem $(T \div \sin 120^\circ = 5 \div \sin 120^\circ)$	M1	
		Tension is 5 N A.G.	A1	3
	(ii)	For resolving forces on <i>B</i> horizontally $(N = T \sin 30^{\circ})$ or from symmetry $(N = 5/2)$ or for using Lami's theorem $(N \div \sin 150^{\circ} = 5 \div \sin 90^{\circ})$	M1	
		For resolving forces on <i>B</i> vertically (3 terms needed) or for using Lami's theorem	M1	
		$0.2 \times 10 + F = T \cos 30^{\circ}$ or ($0.2g + F$) $\div \sin 120^{\circ} = T \div \sin 90^{\circ}$	A1	
		For using $F = \mu R$ (2.33 = 2.5 μ) M1	
		Coefficient is 0.932	A1	5
	(iii)	$(0.2 + m)g - 2.33 = 5\cos 30^{\circ}$ or $mg = 2(2.33)$ m = 0.466	B1 v B1	2
7	(i)	For using the idea that area represents the distance travelled	d. M1	
		For any two of $\frac{1}{2} \times 100 \times 4.8$, $\frac{1}{2} \times 200(4.8 + 7.2)$, $\frac{1}{2} \times 200 \times 7.2$ (240, 1200, 720)	A1	
		Distance is 2160 m	A1	3

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709	4
(ii)	For using the idea that the initial acceleration is the gradier the first line segment or for using $v = at$ (4.8 = 100 <i>a</i>)		
	$v^2 = 2as (4.8^2 = 2a \times 240)$	M1	
	Acceleration is 0.048 ms ⁻²	A1	2
(iii)	a = 0.06 - 0.00024t Acceleration is greater by 0.012 ms ⁻² [$\sqrt{\text{ for } 0.06 - \text{ ans}(ii)}$	B1	
	(must be +ve) and/or wrong coefficient of t in $a(t)$] [Accept 'acceleration is 1.25 times greater']	B1 √	2
(iv)	<i>B</i> 's velocity is a maximum when $0.06 - 0.00024t = 0$ [$$ wrong coefficient of <i>t</i> in <i>a</i> (<i>t</i>)]	B1 √	
	For the method of finding the area representing $s_A(250)$ 240 + $\frac{1}{2}(4.8 + 6.6)150$ or	M1	
	$240 + (4.8 \times 150 + \frac{1}{2} \ 0.012 \times 150^2) $ (1095)	A1	
	For using the idea that s_B is obtained from integration	M1	
	$0.03t^2 - 0.00004t^3$	A1	ć
	Required distance is 155 m $(\sqrt{\text{dependent on both M marks}})$	A1√	6

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

	Mark Scheme Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003 9709/8719	5
1	For using Newton's second law with $a = v^2/r$	М
	$F = 50\ 000\ \frac{25^2}{1250}$	A
	Magnitude of the force is 25 000 N	A
		[3]
e (i)	For stating or implying that the centre of mass is vertically above the	
	lowest point of the cone, and with $\overline{y} = 5$	B
	For using $\tan \theta = \frac{10}{v}$ or equivalent	М
	$\theta = 63.4^{\circ}$	A
		[3]
(ii)	For using $F < \mu R$	М
	$mg\sin\theta < \mu mg\cos\theta$	A
For using μ	for the above 2 marks: = $\tan \phi$ where ϕ is the angle of friction se cone topples without sliding	M A
	Coefficient is greater than 2 (ft on $\tan\theta$ in (i))	A
I.B. Direct	Coefficient is greater than 2 (ft on $\tan\theta$ in (i)) quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1)	A]
	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1)	
	e	[3]
	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed)	[3] B1 M
	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a)	[3] B1
(i)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻²	[3] B1 M A1 [3]
	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$)	[3] B1 M A1 [3] M
(i)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻²	[3] B1 M A2 [3] M A3
(i)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$)	[3] B1 M A1 [3] M
; (i)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$)	[3] B1 M A2 [3] M A3
(i) (ii)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J	[3] B] M A] [3] M A] [2] B]
(i) (ii)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented)	[3] B1 M A1 [3] M A1 [2] B1
(i) (ii)	quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE	[3] B1 M A1 [3] M A1 [2] B1

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	5
4 (i)	e.g. For taking moments about BC		M1
	Distance of centre of mass of triangular portion is		
	$9.5 + \frac{1}{3} \ge 6$ (= 11.5)		B1
	5		
	$8 \times 9.5 \times 4.75 + \frac{1}{2} \times 8 \times 6 \times 11.5 = (8 \times 9.5 + \frac{1}{2} \times 8 \times 6 \times 11.5) = (8 \times 9.5 + \frac{1}{2} \times 8 \times 10^{-1} \times 10$	$(6) \overline{x}$	Alft
	Distance is 6.37 cm		A1
N.B.	Alternative method		
	e.g. Moments about axis through A perpendicular to AB		M1
	Distance of C.O.M. of triangular piece removed is 2		B1
	$(8 \times 15.5) \times 7.75 - (\frac{1}{2} \times 8 \times 6) \times 2 = (124 - 20) \overline{x}_1$		Alft
	$(\bar{x}_1 = 9.13)$ therefore distance is 6.37 cm		A1
			[4]
(ii)	For taking moments about A		M1
(11)	For LHS of $80(15.5 - 6.37) = T \times 15.5 \sin 30^{\circ}$		A1ft
	For RHS of above equation		A1
	Tension is 94.2 N		A1
			[4]
(iii)	For resolving forces on the lamina vertically (3 term ed	quation)	
	$(V = 80 - 94.2 \times 0.5)$ or taking moments about B	. ,	M1
	$(15.5V = 8 \times 10 \times 6.37)$ Magnitude of vertical component is 32.9 N		Alft
	inglinde of foreed component is 52.5 ft		1 1 1 1
			[2]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	5

(i) For using
$$\dot{y} = \dot{y}_0 - gt$$
 with $\dot{y} = 0$ $(t = 2\sin\alpha)$ M1

For using
$$y = \dot{y}_0 t - \frac{1}{2}gt^2$$
 with *t* as found and $y = 7.2$, or show M1
 $t = 1.2$ as in (ii)

Alternatively for using
$$y_{max} = \frac{V^2 \sin^2 \alpha}{2g}$$
 with $y_{max} = 7.2$ and $V = 20$
or $\dot{y}^2 = \dot{y}_0^2 - 2gy$ with $\dot{y} = 0$ M2

$$7.2 = \frac{400\sin^2\alpha}{20}$$
A1

[4]

Speed on hitting the wall is 20×0.8 (use of ball rebounding at 10 ms⁻¹ scores B0) (ii) B1ft For using $y = 0 - \frac{1}{2}gt^2$ $(-7.2 = -\frac{1}{2}10t^2)$ or $0 = \dot{y} - gt \quad (0 = 12 - 10t)$ M1

Distance is 9.6 m (No ft if rebound velocity =
$$10 \text{ ms}^{-1}$$
) A1ft

Alternative – speed on hitting the wall is
$$20 \times 0.8$$
B1ftUse trajectory equation, with $\theta = 0^{\circ}$ M1

$$-7.2 = x \tan 0^{\circ} - \frac{gx^2}{2.8^2 \cos^2 0^{\circ}}$$
 (allow ft with halving attempt including 10) A1ft
x = 9.6 m A1

[4]

(iii)
$$\dot{y} = \mp 10 \text{ x } 1.2$$
 B1ft

$$\theta = \tan^{-1}(\mp)\frac{\dot{y}}{\dot{x}}$$
 (\dot{x} must have halving attempt. Allow $\dot{x} = 10$) M1

Required angle is 56.3°

A1

5

Page 4	Mark Scheme Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003 9709/8719	5
(i)	For using Newton's second law	Ν
	$120 - 8v - 80 \times 10 \times 0.1 = 80a$	А
	$\frac{1}{5-v}\frac{dv}{dt} = \frac{1}{10}$ from correct working	A
	5-v dt = 10	
		[3
(ii)	For separating the variables and attempting to integrate	Ν
	$-\ln(5-v) = \frac{1}{10}t + (C)$	A
	For using $v(0) = 0$ to find C (or equivalent by using limits)	Ν
	$(C = -\ln 5)$	
	For converting the equation from logarithmic to exponential form	Ν
	(allow even if + C omitted) $(5 \div (5 - v) = e^{t/10})$	
	$v = 5(1 - e^{-t/10})$ from correct working	А
		[4
		L
(iii)	For using $v = \frac{dx}{dt}$ and attempting to integrate	Ν
	$x = 5(t + 10e^{-t/10}) + (C)$	A
	For using $x(0) = 0$ to find (<i>C</i>) (= -50), then substituting $t = 20$	Ν
	(or equivalent using limits)	-
	Length is 56.8 m	А
	OR dv	
	For using Newton's second law with $a = v \frac{dv}{dx}$, separating the variables a	ind

For using Newton's second law with $a = v \frac{dv}{dx}$, separating the variables and attempting to integrate M1 $-v - 5\ln(5 - v) = \frac{x}{10} + C$ A1 For using v = 0 when x = 0 to find C (= -5ln5), then substituting t = 20 into v(t) $(v(20) = 5(1 - e^{-2}) = 4.3233)$, And finally substituting v(20) into the above equation $(x = -50(1 - e^{-2}) + 50 \times 2 = 50 + 50e^{-2})$ M1 Length is 56.8m A1

[4]

CAMBRIDGE

November 2003

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

Page 1 Mark Scher AICE AND A AND AS LEVEL		Syllabus Paper SER 2003 9709/0390 6
$\begin{bmatrix} 1 & & & \\ & x & 0 & 2 \\ & \text{freq} & 23 & 17 \\ \text{OR} & & & \end{bmatrix}$	M1	For reasonable attempt at the mean using freqs or probs but not using prob=0.5
P(0) = 23/40, P(2) = 17/40 Mean = 34/40 = 0.850 Variance = (4×17) / 40 - (0.85) ² = 0.978 (exact answer 0.9775) (391/400)	A1 M1 A1ft 4	For correct mean For correct variance formula For correct answer
frequencies: 3, 7, 6, 3, 1 scaled frequencies: 3, 7, 3, 1.5, 0.5 or 0.006, 0.014, 0.006, 0.003, 0.001	M1	For frequencies and attempt at scaling, accept $cw/freq$ but not $cw \times freq$, not cw/mid point
scaled f	A1	For correct heights from their scaled frequencies seen on the graph
	B1	For correct widths of bars, uniform horiz scale, no halves or gaps or less-than-or-equal tos
0 500 1000 2000 3000 4000 area, m ²	B1 4	Both axes labelled, fd and area or m ² . Not class width
3 28 - $\mu = 0.496\sigma$ (accept 0.495 or in between) 35 - $\mu = 1.282\sigma$ (accept 1.281 or in between, but not 1.28)	M1 A1 A1	For any equation with μ and σ and a reasonable z value not a prob. Allow cc, $\sqrt{\sigma}$, σ^2 , or – and give M1 A0A1ft for these four cases For 2 correct equations
$\sigma = 8.01$ (accept 8.80 to 8.02 incl.)	M1 A1	For solving their two equations by elim 1 variable sensibly For correct answer
$\sigma = 8.91$ (accept 8.89 to 8.92 incl) $\mu = 23.6$	A1 6	For correct answer
$ \begin{array}{r} 4 (\mathbf{i}) \ (0.95)^5 \\ = 0.774 \end{array} $	M1 A1 2	For 0.95 seen, can be implied For correct final answer
(ii) $(0.95)^4 \times (0.05)^1 \times {}_5C_1$	M1	For any binomial calculation with 3 terms, powers summing to 5
= 0.204	A1 2	For correct answer
(iii) $(0.95)^2 \times (0.05)$	M1	For no Ps, no Cs, and only 3 terms of type $p^2(1-p)$
= 0.0451(361/8000)	A1 2	For correct answer

Page 2 Mark Sche	me	Syllabus Paper				
AICE AND A AND AS LEVEL – NOVEMBER 2003 9709/0390 6						
5	M1	For correct shape ie <i>M</i> and <i>F</i> first				
0.54 0.95 C 0.54 0.95 NC	A1	All correct, ie labels and probabilities, no labels gets M1 only for (implied)correct shape				
0.46 0.02 C						
0.98 ~ NC	M1 A1	For finding P(<i>M</i> and <i>C</i>) and P(<i>F</i> and <i>C</i>) For using 4 correct probs				
$P(M C) = \frac{0.54 \times 0.05}{0.54 \times 0.05 + 0.46 \times 0.02}$ $= 0.746 \ (135/181)$	M1 B1 M1 A1 6	For correct conditional probability For correct numerator For summing two two-factor 'terms' For correct answer				
6 (a) (i) 18564 (ii) ${}_{17}C_5$ or $6/18 \times$ their (i) or ${}_{18}C_6 - {}_{17}C_6$ = 6188	B1 1 M1 A1 2	For using 17 and 5 as a perm or comb				
(b) (i) 40320 (ii) $5! \times 3! \times {}_{4}C_{1}$	B1 1 B1 B1	For correct final answer For 5!or ${}_{5}P_{5}$ used in a prod or quotient with a term \neq 5! For 3! For ${}_{4}C_{1}$, may be implied by 4!				
= 2880	B1 B1 4					
7 (i) $z = \pm 1.143$ P(7.8 <t<11)=<math>\Phi(1.143) - 0.5 = 0.8735 - 0.5</t<11)=<math>	M1 A1 M1	$ \begin{array}{c} \mbox{For standardising, can be implied, no cc, no σ^2 but accept $\sqrt{\sigma}$ \\ \mbox{For seeing 0.8735} \\ \mbox{For subtracting two probs, $p_2 - p_1$ where $p_2 > p_1$ \\ \end{array} $				
= 0.3735 (accept ans rounded to 0.37 to 0.374)	A1 4	For correct answer				
(ii) $(0.1265)^2 \times (0.8735) \times {}_{3}C_2$ = 0.0419	M1 A1ft 2	For any three term binomial-type expression with powers summing to 3 For correct answer ft on their 0.8735/0.1265				
(iii) Not symmetric so not normal Does not agree with the hospital's figures	B1 B1dep 2	For any valid reason For stating it does not agree, with no invalid reasons				
8 (i) $18c = 1$	M1	For $\sum p_i = 1$				
c = 1/18 = 0.0556	A1 2	For correct answer				
(ii) $E(X) = 2.78 (= 25/9)(= 50c)$ Var $(X) = 1.17 (= 95/81) (=160c - 2500 \ c^2)$	M1 A1ft M1 A1ft 4	Using correct formula for E(X) For correct expectation, ft on their c For correct variance formula For correct answer ft on their c				
(iii) $P(X > 2.78) = 11c$ = 0.611 (= 11/18)	M1 A1 2	For using their correct number of discrete values of <i>X</i> For correct answer				

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

	Page 1	Mark Schem A AND AS LEVEL – NOV		-D 2002	Syllabus	Paper	
ļ	A AND AS LEVEL - NO			ER 2003	9709/8719	7	
1		l 9 (13.87)	M1 A1 M1	For equality or equivalent and t For correct ineq For solving a re	term in 1/ √ <i>n</i> Juality	and a <i>z</i> -va	
	<i>n</i> = 14		A1 [4]	For correct answer cwo			
2	$\lambda = 4.5$ P(X = 2, 3, 4	$) = e^{-4.5} \left(\frac{4.5^2}{2!} + \frac{4.5^3}{3!} + \frac{4.5^4}{4!} \right)$	M1 B1 M1 A1	For using Poiss For correct mea For calculating For correct num	In used $P(2, 3, 4)$ the	eir mean	nean
		= 0.471	A1 [5]	For correct answ NB Use of Norr SR Correct Bin	mal can score		
3	SU ~ N(19,1 P(T-SU > 0)	2)) or P(T-S > 5) = $1 - \Phi\left(\frac{0-1}{\sqrt{21}}\right)$ = $\Phi(0.2182)$	B1 M1 M1 M1	For correct mean and variance. Can be implied if using $P(T-S>5)$ in next part For consideration of $P(T - SU > 0)$ For summing their two variances For normalising and finding correct area from their values For correct answer			ea
		= 0.586	A1 [5]				
4	(i) $\lambda = \frac{20}{80}$	= 0.25	B1	For $\lambda = 0.25$			
	· · · ·	$= 1 - P(X \le 2)$	M1	For calculating λ)	a relevant Po	oisson prob	(any
	= 1-	$-e^{-0.25}(1+0.25+\frac{0.25^2}{2})$	M1	For calculating ex	xpression for	$P(X \ge 3)$ the	eir λ
	= 0.0	00216	A1	For correct answ	wer		
			[4]				
	(ii) $e^{\frac{-k}{80}} =$		M1	For using $\lambda = -t$	/80 in an exp	pression for	P(0)
	$\frac{-k}{80} = -0.1$	0536	M1	For equating the	•		
	<i>k</i> = 8.43		M1 A1 [4]	For solving the For correct answ		quation	
5	(i) $P(\bar{X} > 18)$	$00) = 1 - \Phi\left(\frac{1800 - 1850}{117 / \sqrt{26}}\right)$	B1	For $117/\sqrt{26}$ (c	or equiv)		
		$= \Phi(2.179)$	M1	For standardisir	-	tables	
		= 0.985	A1	For correct answ	wer cwo		
			[3]				
L			1	1			

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	7

(**) II 1050	D1	Doth have other as a second
(ii) $H_0: \mu = 1850$ $H_1: \mu \neq 1850$	B1	Both hypotheses correct
Test statistic = $\frac{1833 - 1850}{117/\sqrt{26}}$	M1	Standardising attempt including standard error
= -0.7409	A1	Correct test statistic (+/-)
Critical value $z = \pm 1.645$	M1	Comparing with $z = \pm 1.645$, + with + or – with – (or equiv area comparison) ft 1 tail test z=1.282
Accept H ₀ , no significant change	A1ft [5]	For correct conclusion on their test statistic and their <i>z</i> . No contradictions.
 6 (i) (a) Rejecting H₀ when it is true (b) Accepting H₀ when it is false 	B1 B1 [2]	Or equivalent
(ii) (a) P(NNNNN) under $H_0 = (0.94)^5$ = 0.7339 P(Type I error) = 1 - 0.7339 = 0.266	M1* A1 M1* A1ft dep*	For evaluating P(NNNNN) under H_0 For correct answer (could be implied) For identifying the Type I error outcome For correct final answer SR If M0M0 allow B1 for Bin(5,0.94)used
	[4]	
(b) P(NNNNN) under $H_1 = (0.7)^5$ = 0.168 P(Type II) error = 0.168	M1 M1 A1 [3]	For Bin(5,0.7) used For P(NNNN) under H ₁ For correct final answer
7 (i) $\int_{0}^{\infty} k e^{-3x} dx = 1$	M1	For attempting to integrate from 0 to ∞ and putting the integral = 1
$0 - \frac{-k}{3} = 1 \Longrightarrow k = 3$	A1	For obtaining given answer correctly
5	[2]	
(ii) $\int_{0}^{q_1} 3e^{-3x} dx = 0.25$	M1	For equating $\int 3e^{-3x} dx$ to 0.25 (no limits
$\begin{bmatrix} -e^{-3x} \end{bmatrix}_{0}^{q_{1}} = 0.25 \\ -e^{-3q_{1}} + 1 = 0.25 \\ 0.75 = e^{-3q_{1}} \end{bmatrix}$	M1	needed) For attempting to integrate and substituting (sensible) limits and rearranging
$q_1 = 0.0959$	A1	For correct answer
	[3]	

Page 3	Mark Scheme			Syllabus	Paper	
	A AND AS LEVEL – NO	A AND AS LEVEL – NOVEMBER 2003			7	
=	$\begin{bmatrix} -xe^{-3x} dx \\ \left[-xe^{-3x} \right]_{0}^{\infty} - \int_{0}^{\infty} -e^{-3x} dx \\ \left[\frac{e^{-3x}}{-3} \right]_{0}^{\infty} \end{bmatrix}_{0}^{\infty}$ 0.333 or 1/3	B1 M1 A1 M1 A1 A1 [6]	For correct state For attempting to needed) For $-xe^{-3x}$ or $-xe^{-3x}$ or $-xe^{-3x}$ or $-xe^{-3x}$ or $-xe^{-3x}$ For attempt $\int -xe^{-3x}$ For $0+\left[\frac{e^{-3x}}{-3}\right]$ For correct ans	to integrate $3xe^{-3x}/3$ $e^{-3x} dx$ (their \int_{0}^{∞}	e ^{-3x} (no limit	s